

A sequência de Fibonacci e o número de ouro

Karla Ferreira de Arruda Duque 1 e Pedro Renilson Alves Ferreira 2

karla.ferreira@gmail.com¹, pedrorenilson2011@gmail.com²

Semana da Matemática do Campus de Ji-Paraná - XX SEMAT

1. Introdução

Leonardo Fibonacci, também conhecido como Leonardo Pisano, Leonardo de Pisa ou ainda Leonardo Bigollo, é um dos matemáticos mais importantes da história. Segundo Ramos (2013, p. 3), Fibonacci "foi para muitos o matemático europeu mais original e capaz do Período Medieval", e dentre suas contribuições destaca-se a obra *Liber Abacci*, publicada em 1202. Nela, são tratados assuntos aritméticos e algébricos e, além disso, essa publicação teve um importante papel na introdução dos algarismos indo-árabicos na Europa. A obra traz uma série de problemas matemáticos, tais como aqueles relacionados ao cálculo de raízes quadráticas e cúbicas, o problema do resto chinês e o problema da reprodução de coelhos.

Este último problema é que dá origem à sequência de Fibonacci, e a sua solução tem forte relação com uma constante que é motivo de muita admiração na matemática. Trata-se do número de ouro, o qual foi batizado em 1899 pelo matemático Mark Barr pela letra grega *phi* (ϕ) como uma forma de homenagem ao grande escultor grego Fídias, ou ainda, Phídias (RAMOS, 2013).

Diante disso, neste trabalho, o qual foi desenvolvido a partir do Programa de Bolsa de Incentivo Acadêmico (BIA) da UFRPE, apresentamos a solução do referido problema e exibimos a definição do número de ouro. Além disso, serão apresentados alguns exemplos de propriedades algébricas e aplicações que a sequência de Fibonacci e ϕ possuem, e também como ambos estão conectados. Com isso, esperamos despertar uma maior apreciação quanto a esses temas e, consequentemente, quanto a matemática como um todo.

2. Objetivos

Apresentar a sequência de Fibonacci e de que forma podemos determinar um termo qualquer pertencente a ela, como também exibir a definição de ϕ , para que seja possível, por fim, mostrar a relação que existe entre esses temas.

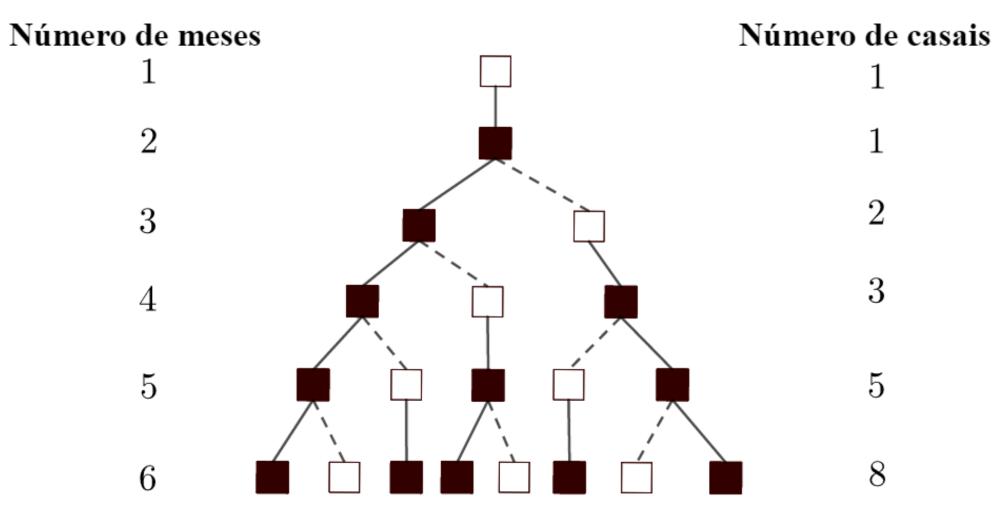
3. Metodologia

Para alcançar os objetivos traçados, utilizamos de pesquisa bibliográfica para fundamentar os conceitos e os resultados utilizados ao longo do texto, como também para servir como um indicativo de fonte para um maior aprofundamento nos temas trabalhados.

4. Apresentação e discussão dos dados

4.1 Sequência de Fibonacci

O problema que origina a sequência de Fibonacci pode ser enunciado da seguinte forma: Em um pátio fechado coloca-se um casal de coelhos. Supondo que em cada mês, a partir do segundo mês de vida, cada casal se torna fértil, isto é, dá origem a um novo casal, ao fim de um ano, quantos casais de coelhos estão no pátio? Nesse problema, não há perdas de coelhos e, assim, a solução para os 6 primeiros meses pode ser representada pela Figura 1.



Casal infértil — Mesmo casal

Casal fértil — Novo casal

Figura 1 - Problema de reprodução de coelhos nos 6 primeiros meses
Fonte: Autoria própria

Portanto, podemos perceber que, a partir do terceiro mês, a quantidade de casais em determinado mês é dada pela soma do número de casais nos dois meses anteriores. Sendo assim, obtemos uma sequência em que os dois primeiros termos são iguais a 1 e os demais termos são dados pela soma dos seus dois antecessores. Nessa sequência, a posição de um termo representa seu respectivo mês e o valor que o termo assume corresponde ao total de casais naquele mês, como indicado a seguir:

$$(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \cdots)$$

Essa é a famosa sequência de Fibonacci e podemos defini-la de forma recursiva através da equação $f_n = f_{n-1} + f_{n-2}$, com $n \geq 3$ e $f_1 = f_2 = 1$. Além disso, f_n representa o número de casais no n-ésimo mês. Dessa forma, após doze meses haverá 144 casais de coelhos no pátio. Além disso, podemos encontrar uma expressão que nos forneça a quantidade de casais em um mês apenas em função do valor de n. Essa expressão, cuja demonstração consta em Ramos (2013), é conhecida como Fórmula de Binet e é dada por:

$$f_n = \frac{1}{\sqrt{5}} \cdot \left\{ \left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right\}.$$

A sequência de Fibonacci possui uma série de propriedades algébricas que podem ser vistas com mais detalhes em Leopoldino (2016), Lovász, Pelikán e Vesztergombi (2003) e Ramos (2013). Dentre elas, temos que dois termos consecutivos dessa sequência são primos entre si, ou seja, o MDC entre eles vale 1. Além disso, a soma dos n primeiros termos da sequência será dada pela diferença entre

o termo
$$(n-2)$$
 e 1, isto é, $\sum_{n=0}^{\infty} f_n = f_{n+2} - 1$.

Além das propriedades algébricas que possui, é impressionante, conforme afirma Ramos (2013), como os números da sequência de Fibonacci aparecem nos mais variados campos, tais como na geometria, na teoria dos números e na genética. Além disso, eles se manifestam em fenômenos da natureza, como na distribuição de sementes de um girassol e na árvore genealógica de um zangão.

4.2 Número de ouro (ϕ)

Podemos definir o número de ouro a partir da divisão de um segmento em média e extrema razão. Dividir um segmento \overline{AB} em média e extrema razão consiste em determinar um ponto C nesse segmento de forma que o segmento \overline{AB} esteja para o segmento \overline{AC} assim como o segmento \overline{AC} está para o segmento \overline{CB} , como expresso abaixo e representado na figura a seguir.

$$\frac{\overline{AB}}{\overline{AC}} = \frac{\overline{AC}}{\overline{CB}} \tag{1}$$

Figura 1 - Divisão de um segmento em média e extrema razão Fonte: Autoria própria

Então, podemos definir $\phi=\overline{AB}/\overline{AC}=\overline{AC}/\overline{CB}$ e ao determinar que $\overline{AB}=a$, $\overline{AC}=x$ e $\overline{CB}=a-x$, quando substituirmos esses valores em (1), obteremos a equação $x^2+ax-a^2=0$. Solucionando-a em função de x, segue

$$x_1 = -a\left(\frac{1+\sqrt{5}}{2}\right)$$
 e $x_2 = a\left(\frac{\sqrt{5}-1}{2}\right)$,

e como x expressa o valor do segmento \overline{AC} , temos que apenas a solução x_2 nos satisfaz. Por definição, temos que $\phi = \overline{AB}/\overline{AC} = a/x$. Logo, substituindo o valor de x, obtemos:

$$\frac{a}{x} = \frac{1+\sqrt{5}}{2} \Rightarrow \phi = \frac{1+\sqrt{5}}{2} \simeq 1,6180339 \cdots,$$

em que $\overline{AB}/\overline{AC}$, a razão que define ϕ , é chamada de razão áurea. Além disso, ϕ possui algumas propriedades algébricas bem inte-

Além disso, ϕ possui algumas propriedades algébricas bem interessantes, tal como o fato de podermos obter seu quadrado somando 1 ao seu valor, isto é, $\phi^2 = \phi + 1$. Em Belini (2015), Huntley (1985) e

Ramos (2013), podemos observar essa e algumas outras propriedades algébricas que ϕ possui, e de que forma a proporção áurea está presente na geometria, como, por exemplo, no retângulo áureo.

4.3 Relações entre a sequência de Fibonacci e ϕ

Podemos observar que a Fórmula de Binet pode ser dada em função de ϕ . Uma vez que

$$f_n = \frac{1}{\sqrt{5}} \cdot \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right\} \quad \mathbf{e} \quad \phi = \frac{1+\sqrt{5}}{2},$$

podemos reescrever a Fórmula de Binet como

$$f_n = \frac{1}{\sqrt{5}} \cdot \{ (\phi)^n - (1 - \phi)^n \}.$$

Ela nos traz um fato curioso pois percebemos que os números da sequência de Fibonacci, os quais são naturais, podem ser gerados a partir de potências do número de ouro, que por sua vez é irracional.

Uma outra relação muito interessante é o fato de que, ao realizarmos a divisão entre dois elementos consecutivos da sequência de Fibonacci, notaremos que, quanto maiores forem os valores desses elementos, essa razão irá se aproximar cada vez mais do valor de ϕ . Desta forma, temos o seguinte resultado

$$\lim_{n \to \infty} \frac{f_{n+1}}{f_n} = \phi,$$

o qual encontra-se demonstrado em Ramos (2013) e é válido, conforme Huntley (1985), para qualquer sequência de Fibonacci.

5. Considerações finais

Diante do que foi exibido neste trabalho, uma sequência didática pode ser montada como produto para ser aplicado em sala de aula, fazendo-se uso da sequência de Fibonacci e do número de ouro a partir do problema de reprodução de coelhos e da divisão de um segmento em média e extrema razão. Podemos trabalhar nesta sequência didática algumas propriedades algébricas e aplicações que foram brevemente introduzidas neste trabalho, bem como a interessante relação entre a sequência de Fibonacci e o número de ouro, observando que a divisão de sucessivos termos dessa sequência se aproxima cada vez mais de ϕ .

Dessa forma, dada a riqueza e a variedade de temas que podem ser abordados a partir desses dois conteúdos, tais como a geometria, a teoria dos números, manipulações algébricas e manisfestações na natureza, acreditamos que essa relação pode ser uma forte ferramenta a ser trabalhada em sala de aula com alunos dos anos finais do ensino médio e até mesmo dos anos iniciais da graduação, proporcionando uma maior admiração destes para com a matemática.

6. Referências

- [1] BELINI, Marcelo Manechine. A razão áurea e a sequência de Fibonacci. 2015. 67 f. Dissertação (Mestrado) Curso de Matemática, Universidade de São Paulo, São Carlos, 2015. Disponível em: https://teses.usp.br/teses/disponiveis/55/55136/tde-06012016-161056/pt-br.php. Acesso em: 01 ago. 2020.
- [2] HUNTLEY, H. E. **A Divina Proporção**: um ensaio sobre a beleza na matemática. Brasília: Editora Universidade de Brasília, 1985.
- [3] LEOPOLDINO, Karlo Sérgio Medeiros. Sequências de Fibonacci e a Razão Áurea: aplicações no ensino básico. 2016. 103 f. Dissertação (Mestrado) Curso de Matemática, Universidade Federal do Rio Grande do Norte, Natal, 2016. Disponível em: https://repositorio.ufrn.br/jspui/handle/123456789/21244. Acesso em: 01 ago. 2020.
- [4] LOVÁSZ, László; PELIKÁN, József; VESZTERGOMBI, Katalin. **Discrete Mathematics**: elementary and beyond. New York: Springer, 2003.
- [5] RAMOS, Marcos Gertrudes Oliveira. A Sequência de Fibonacci e o Número de Ouro. 2013. 93 f. Dissertação (Mestrado) Curso de Matemática, Universidade Estadual de Santa Cruz, Ilhéus, 2013. Disponível em: http://www.biblioteca.uesc.br/biblioteca/bdtd/201160277d.pdf. Acesso em: 1 ago. 2020.